Mixing-Time Regularized Policy Gradient
نویسندگان
چکیده
Policy gradient reinforcement learning (PGRL) has been receiving substantial attention as a mean for seeking stochastic policies that maximize cumulative reward. However, the learning speed of PGRL is known to decrease substantially when PGRL explores the policies that give the Markov chains having long mixing time. We study a new approach of regularizing how the PGRL explores the policies by the use of the hitting time of the Markov chains. The hitting time gives an upper bound on the mixing time, and the proposed approach improves the learning efficiency by keeping the mixing time of the Markov chains short. In particular, we propose a method of temporal-difference learning for estimating the gradient of the hitting time. Numerical experiments show that the proposed method outperforms conventional methods of PGRL.
منابع مشابه
Regularized Policy Gradients: Direct Variance Reduction in Policy Gradient Estimation
Policy gradient algorithms are widely used in reinforcement learning problems with continuous action spaces, which update the policy parameters along the steepest direction of the expected return. However, large variance of policy gradient estimation often causes instability of policy update. In this paper, we propose to suppress the variance of gradient estimation by directly employing the var...
متن کاملEquivalence Between Policy Gradients and Soft Q-Learning
Two of the leading approaches for model-free reinforcement learning are policy gradient methods and Q-learning methods. Q-learning methods can be effective and sample-efficient when they work, however, it is not well-understood why they work, since empirically, the Q-values they estimate are very inaccurate. A partial explanation may be that Q-learning methods are secretly implementing policy g...
متن کاملRobust Estimation of Natural Gradient in Optimization by Regularized Linear Regression
We are interested in the optimization of the expected value of a function by following a steepest descent policy over a statistical model. Such approach appears in many different model-based search meta-heuristics for optimization, for instance in the large class of random search methods in stochastic optimization and Evolutionary Computation. We study the case when statistical models belong to...
متن کاملCombining policy gradient and Q-learning
Policy gradient is an efficient technique for improving a policy in a reinforcement learning setting. However, vanilla online variants are on-policy only and not able to take advantage of off-policy data. In this paper we describe a new technique that combines policy gradient with off-policy Q-learning, drawing experience from a replay buffer. This is motivated by making a connection between th...
متن کاملMaximum Likelihood Learning With Arbitrary Treewidth via Fast-Mixing Parameter Sets
Inference is typically intractable in high-treewidth undirected graphical models, making maximum likelihood learning a challenge. One way to overcome this is to restrict parameters to a tractable set, most typically the set of tree-structured parameters. This paper explores an alternative notion of a tractable set, namely a set of “fast-mixing parameters” whereMarkov chainMonte Carlo (MCMC) inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014